Brinker nanostructures Research Group

Sorry, this application requires JavaScript

Bryan Kaehr, Jason L. Townson, Robin M. Kalinich, Yasmine H. Awad, B.S. Swartzentruber, Darren R. Dunphy, and C. Jeffrey Brinker

Tissue-derived cultured cells exhibit a remarkable range of morphological features in vitro, depending on phenotypic expression and environmental interactions. Translation of these cellular architectures into inorganic materials would provide routes to generate hierarchical nanomaterials with stabilized structures and functions. Here, we describe the fabrication of cell/silica composites (CSCs) and their conversion to silica replicas using mammalian cells as scaffolds to direct complex structure formation. Under mildly acidic solution conditions, silica deposition is restricted to the molecularly crowded cellular template. Inter- and intracellular heterogeneity from the nano- to macroscale is captured and dimensionally preserved in CSCs following drying and subjection to extreme temperatures allowing, for instance, size and shape preserving pyrolysis of cellular architectures to form conductive carbon replicas. The structural and behavioral malleability of the starting material (cultured cells) provides opportunities to develop robust and economical biocomposites with programmed structures and functions.

click image for more information

The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers

Carlee E. Ashley, Eric C. Carnes, Genevieve K. Phillips, David Padilla, Paul N. Durfee, Page A. Brown, Tracey N. Hanna, Juewen Liu, Brandy Phillips, Mark B. Carter, Nick J. Carroll, Xingmao Jiang, Darren R. Dunphy, Cheryl L. Willman, Dimiter N. Petsev, Deborah G. Evans, Atul N. Parikh, Bryce Chackerian, Walker Wharton, David S. Peabody & C. Jeffrey Brinker

A nanocarrier—synthesized by the fusion of liposomes to spherical, nanoporous silica particles and subsequent modification of the lipid bilayer with targeting peptides and fusogenic peptides—shows the targeted delivery and controlled release of chemically diverse multicomponent cargos within the cytosol of certain cancer cells.

Cell-Specific Delivery of Diverse Cargos by Bacteriophage MS2 Virus-Like Particles

Carlee E. Ashley, Eric C. Carnes, Genevieve K. Phillips, Paul N. Durfee, Mekensey D. Buley, Christopher A. Lino, David P. Padilla, Brandy Phillips, Mark B. Carter, Cheryl L. Willman, C. Jeffrey Brinker, Jerri do Carmo Caldeira, Bryce Chackerian, Walker Wharton, and David S. Peabody

Virus-like particles (VLPs) of bacteriophage MS2 possess numerous features that make them well-suited for use in targeted delivery of therapeutic and imaging agents. MS2 VLPs can be rapidly produced in large quantities using in vivo or in vitro synthesis techniques. Their capsids can be modified in precise locations via genetic ...

Nano-engineering of Colloidal Particles, Synthetic Biomimetic Blood Cells, Synthetic Opals, Photonic Crystals and the Physics of Self-assembling Nanostructures
Book (UMI / ProQuest Company)

Paper battery?

by edsdesk

Mon Dec 7, 4:28 pm ET
WASHINGTON (Reuters) – Ordinary paper could one day be used as a lightweight battery to power the devices that are now enabling the printed word to be eclipsed by e-mail, e-books and online news.
Scientists at Stanford University in California reported on Monday they have successfully turned paper coated with ink made of silver and carbon nanomaterials into a "paper battery" that holds promise for new types of lightweight, high-performance energy storage.
The same feature that helps ink adhere to paper allows it to hold onto the single-walled carbon nanotubes and silver nanowire films

Some ... some not.

by setArcos

Biotechnology, bioinformatics
Emerging technology
Genetic engineering
Synthetic biology, synthetic genomics
Artificial photosynthesis
Anti-aging drugs: resveratrol, SRT1720
Vitrification or cryoprotectant
Hibernation or suspended animation
Stem cell treatments
Personalized medicine
Body implants, prosthesis
In vitro meat
Regenerative medicine
[edit] Energy systems
Emerging technology
Concentrated solar power includes thermal

Graphene: fundamentals and emergent applications  — Chemistry World
In this context, the text offers an extremely timely and valuable perspective on the first of these materials to attain such enormous attention and is an excellent reference by which to direct analogous research towards other two-dimensional nanomaterials.

Related Posts