Nanomaterials manufacturing

Manufacturing at the Nanoscale

Manufacturing at the nanoscale is known as nanomanufacturing. Nanomanufacturing involves scaled-up, reliable, and cost-effective manufacturing of nanoscale materials, structures, devices, and systems. It also includes research, development, and integration of top-down processes and increasingly complex bottom-up or self-assembly processes.

A product of nanomanufacturing: A 16 gauge wire (above), approximately 1.3 millimeters in diameter, made from carbon nanotubes that were spun into thread. And the same wire on a 150 ply spool (below.) Courtesy of Nanocomp.

In more simple terms, nanomanufacturing leads to the production of improved materials and new products. As mentioned above, there are two basic approaches to nanomanufacturing, either top-down or bottom-up. del airplane out of a block of wood. This approach requires larger amounts of materials and can lead to waste if excess material is discarded. The bottom-up approach to nanomanufacturing creates products by building them up from atomic- and molecular-scale components, which can be time-consuming. Scientists are exploring the concept of placing certain molecular-scale components together that will spontaneously “self-assemble, ” from the bottom up into ordered structures.

Within the top-down and bottom-up catagories of nanomanufacturing, there are a growing number of new processes that enable nanomanufacturing. Among these are:

  • Dip pen lithography is a process in which the tip of an atomic force microscope is "dipped" into a chemical fluid and then used to "write" on a surface, like an old fashioned ink pen onto paper

Structures and properties of materials can be improved through these nanomanufacturing processes. Such nanomaterials can be stronger, lighter, more durable, water-repellent, anti-reflective, self-cleaning, ultraviolet- or infrared-resistant, antifog, antimicrobial, scratch-resistant, or electrically conductive, among other traits. Taking advantage of these properties, today's nanotechnology-enabled products range from baseball bats and tennis rackets to catalysts for refining crude oil and ultrasensitive detection and identification of biological and chemical toxins.

A high resolution image of a graphene transistor with a sheet of carbon
only one atom thick. This high speed electronic device was created using
nanoscale processes, and may one day be used for better computer chips. (Courtesy of James Yardley, Columbia University Nanocenter, an NNI-sponsored NSEC)

CRC Press Nanomaterials: Advances in Manufacturing Proccesses and Multi-functional Applications (Industrial and Systems Engineering Series)
Book (CRC Press)

Tweaking solar cells w/quantum dots

by Citizen_J

Potential 45% increase in efficiency
Researchers from the University at Buffalo, Army Research Laboratory and Air Force Office of Scientific Research have developed a new, nanomaterials-based technology that has the potential to increase the efficiency of photovoltaic cells up to 45 percent. Specifically, the researchers have shown that embedding charged quantum dots into solar cells can improve electrical output by enabling the cells to harvest infrared light, and by increasing the lifetime of photoelectrons

Engineers develop new materials for hydrogen storage  — R & D Magazine
“We are looking for solid materials that can store and release hydrogen easily,” said Olivia Graeve, a professor at the Jacobs School of Engineering at UC San Diego, who has gained international recognition as a nanomaterials manufacturing expert.

DEStech Publications, Inc. Nanoscience and Nanomaterials: Synthesis, Manufacturing and Industry Impacts
Book (DEStech Publications, Inc.)
Research Progress on Environmental, Health, and Safety Aspects of Engineered Nanomaterials
Book (National Academies Press)
Related Posts