Engineered water nanostructures

Water nanostructures disinfect air

The EWNS can disinfect air but start off as nothing more than atmospheric water vapour

Engineered water nanostructures (EWNS), the latest weapons for tackling airborne pathogens, start off as nothing more than atmospheric water vapour.

Despite advances in antibiotics, vaccines and infection control, infectious diseases continue to affect hundreds of millions of people each year and the number of antibiotic resistant bacteria is on the rise. Therefore, there is an urgent need for innovative, effective and low-cost technologies in the battle against airborne infections. Upper-room UV irradiation, air filtration, photocatalysis and biocidal gases are the current methods most commonly used for air disinfection. However, these methods come with a variety of drawbacks such as potential health risks and high costs.

Philip Demokritou and colleagues from the Harvard School of Public Health and the National Institute of Occupational Safety and Health in the US, have designed a system that transforms atmospheric water vapour into EWNS. With a size of only 25nm, the nanostructures are highly mobile and remain in room air for a long time due to their high electric charge. Disinfection of the air is achieved as the nanostructures contain reactive oxygen species, such as hydroxyl and superoxide radicals, which interact with the outer membranes of bacteria, rendering them inactive.

Toxicological studies on mice by Demokritou’s team have shown that the EWNS have minimal toxicological effects. No respiratory tract toxicity was found at exposure levels and times higher and longer than those needed to inactivate the bacteria. Demokritou explains that the radicals are harmless to cell membranes in the lungs of test animals because ‘the organic matter in the lung lining fluid which covers the epithelial cells neutralises the reactive oxygen species, so they never reach the cells.’

‘The proposed method has the potential to transform the way we currently control infectious diseases, ’ says Demokritou, ‘if proven effective in practice, it could be used to create “shields” to protect people in their microenvironments.’

CRC Press Characterization of Nanostructures
Book (CRC Press)

Paper battery?

by edsdesk

Mon Dec 7, 4:28 pm ET
WASHINGTON (Reuters) – Ordinary paper could one day be used as a lightweight battery to power the devices that are now enabling the printed word to be eclipsed by e-mail, e-books and online news.
Scientists at Stanford University in California reported on Monday they have successfully turned paper coated with ink made of silver and carbon nanomaterials into a "paper battery" that holds promise for new types of lightweight, high-performance energy storage.
The same feature that helps ink adhere to paper allows it to hold onto the single-walled carbon nanotubes and silver nanowire films

Some ... some not.

by setArcos

Biotechnology, bioinformatics
Emerging technology
Genetic engineering
Synthetic biology, synthetic genomics
Artificial photosynthesis
Anti-aging drugs: resveratrol, SRT1720
Vitrification or cryoprotectant
Hibernation or suspended animation
Stem cell treatments
Personalized medicine
Body implants, prosthesis
In vitro meat
Regenerative medicine
[edit] Energy systems
Emerging technology
Concentrated solar power includes thermal

Nanotubes Increase Solar PV Conductivity 100 Million-Fold  — Sourceable
Carbon-based nanostructures are already being used as materials in solar cells with increasing frequency, yet their ability to enhance electrical performance has thus far been hampered by limited ability to assemble orderly networks using the materials.

Related Posts