Nanotechnology for Future Electronics

Potential opportunities for nanotechnology in electronics

Executive Overview

The opportunities that nanotechnology presents to our industry are many, and a short article cannot come close to covering the breadth implied by this title! However, following a general introductory discussion, a few selected examples will help build an understanding of basic concepts behind some of the latest nanoelectronics research efforts. Most of the examples are taken from university research on potential "beyond-CMOS" device technologies funded by an industry-government partnership. References to more detailed publications on these projects are included to serve as a "pointer to the literature" on some of today’s most significant nanodevice research.

Robert Doering, Texas Instruments, Dallas, Texas, USA

In common usage, "nanotechnology" refers to structures (i.e., devices) and materials (and processes to fabricate them) that exhibit useful properties resulting from sub-100nm features. Note, however, that a somewhat vague restriction to "qualitatively new" is also usually included. For example, 90nm (or even 30nm) gate-length MOSFETs are not considered "nanotechnology" in many circles.

This point is even better illustrated via an informal poll of materials scientists and chemists at a meeting a few years ago, which indicated substantial agreement that nylon would be called a "nanotechnology" material if it had been invented "last week" rather than in 1935! Of course, this is just one of many examples from chemical synthesis illustrating the difficulty in creating a simple definition of "nanotechnology."

The current common usage of "nanotechnology" also usually implies something revolutionary rather than evolutionary. With respect to semiconductor product manufacturing, this criterion generally encourages focus on examples that are typically a decade or more from potential implementation.

Cambridge University Press Nanotechnologies for Future Mobile Devices
Book (Cambridge University Press)

Nanotubes Increase Solar PV Conductivity 100 Million-Fold  — Sourceable
Carbon-based nanostructures are already being used as materials in solar cells with increasing frequency, yet their ability to enhance electrical performance has thus far been hampered by limited ability to assemble orderly networks using the materials.

Pan Stanford Publishing Luminescence: The Instrumental Key to the Future of Nanotechnology
Book (Pan Stanford Publishing)
Cambridge University Press Quantum Dots: Optics, Electron Transport and Future Applications
Book (Cambridge University Press)
  • Used Book in Good Condition
Springer Chips 2020: A Guide to the Future of Nanoelectronics (The Frontiers Collection)
Book (Springer)
Pennyhill Press Competing for the Future: Unlocking Small Wonders for Tomorrow's Nanoelectronic Uses
eBooks (Pennyhill Press)
Related Posts